This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

PHOSPHONATE CHEMISTRY. A NOVEL PREPARATION OF PHOSPHONODITHIOIC HALIDES

Harles G. Chavdarian^a

^a Stauffer Chemical Company, Western Research Center, Richmond, CA

To cite this Article Chavdarian, Harles G.(1987) 'PHOSPHONATE CHEMISTRY. A NOVEL PREPARATION OF PHOSPHONODITHIOIC HALIDES', Phosphorus, Sulfur, and Silicon and the Related Elements, 31:1,77-80

To link to this Article: DOI: 10.1080/03086648708079344

URL: http://dx.doi.org/10.1080/03086648708079344

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

PHOSPHONATE CHEMISTRY. A NOVEL PREPARATION OF PHOSPHONODITHIOIC HALIDES

CHARLES G. CHAVDARIAN

Stauffer Chemical Company, Western Research Center, 1200 S. 47th Street, Richmond, CA 94804

(Received July 10, 1986)

Phosphonodithioic halides can be obtained *via* a novel "one-flask" process by treatment of 2,4-bis(alkyl or aryl)-1,3-dithia-2,4-diphosphetane-2,4-disulfides with a lithium halide, an alkyl halide, and 15-crown-5.

INTRODUCTION

Phosphonodithioic halides (1) are important intermediates in the synthesis of pesticides.^{1,2} We required the ready availability of S-alkyl alkylphosphonodithioic halides 1a and 1b as synthetic intermediates. The bromides were of particular interest due to their greater reactivity (over the chlorides). Most literature syntheses have dealt with the preparation of the chlorides with a few reported examples of the bromides. 1-3 Typically, the phosphonodithioic halides have been obtained in multi-step fashion via the precursor phosphonous di- and monohalides. 1 Recently, it was shown that phosphonothioic dichlorides could be selectively converted to the desired S-alkyl phosphonodithioic chlorides (1b) by addition of α -branched alkyl mercaptans in the presence of triethylamine.² However, S-(primary alkyl) phosphonodithioic chlorides (1b) cannot be cleanly obtained by this method. A synthesis of S-alkyl arylphosphonodithioic bromides (1c) has been reported.³ The procedure involves treatment of a 2,4-bis(aryl)-1,3dithia-2,4-diphosphetane-2,4-disulfide with an alkyl halide in a sealed tube for 48 hours. We were unable to adapt this process to the preparation of the corresponding alkylphosphonodithioic bromides (1a). We now wish to report a novel "one-flash" approach to these bromides (1a). In addition, alkylphosphonodithioic chlorides (1b) and arylphosphonodithioic bromides (1c) are also amenable by this method.

$$\begin{array}{c}
S \\
| \\
| \\
P - X
\end{array}$$

$$\begin{array}{c}
S \\
S \\
R^2 \\
1
\end{array}$$

1a,
$$R^1 = alkyl$$
, $R^2 = alkyl$, $X = Br$
1b, $R^1 = alkyl$, $R^2 = alkyl$, $X = Cl$

RESULTS AND DISCUSSION

Our approach required the cleavage of a bis(alkyl)dithiophosphetanedisulfide (2)⁴ with bromide anion. The resulting intermediate, in the presence of an alkyl bromide, would undergo alkylation to yield the alkylphosphonodithioic bromide (1a). Generation of a soluble and sufficiently reactive bromide anion could be facilitated by the use of a crown ether (see Scheme 1).

Initially, treatment of 2,4-bis(ethyl)-1,3-dithio-2,4-diphosphetane-2,4-disulfide with lithium bromide, 1-bromopropane, and 12-crown-4⁵ in refluxing toluene resulted in essentially no reaction. This was unusual in view of the reported suitability of 12-crown-4 for lithium complexation.⁶ However, substitution of 12-crown-4 with 15-crown-5⁵ effected reaction to provide S-n-propyl ethylphosphonodithioic bromide (3). Not surprisingly, use of alkyl halides of greater reactivity (e.g., allyl bromide or benzyl bromide) afforded higher yields of products (4 and 5). S-allyl 4-methoxyphenylphosphonodithioic bromide (6) was also successfully prepared by this process. Alternatively, the use of lithium chloride proceeded smoothly to yield S-allyl ethylphosphonodithioic chloride (7), demonstrating the applicability of this method to the preparation of the corresponding chlorides. All results are summarized in Table I.

In conclusion, this method affords the ready synthesis of both phosphonodithioic bromides and chlorides, and also complements the literature² by allowing preparation of S-(primary alkyl) phosphonodithioic halides such as 3.

Scheme 1

Compound	R¹	R ²	x	Reaction time (hrs) ^a	Yield (%)b
3	C ₂ H ₅	n-C ₃ H ₇	Br	26	31
4	C ₂ H ₅	H ₂ C=CH-CH ₂	Вг	4	50
5	ĆH,	C ₆ H ₅ —CH ₂	Br	5	60
6	4-CH ₃ O—C ₆ H ₄	H ₂ C=CH—CH ₂	Br	8	25
7	C_2H_5	$H_2^{-}C = CH - CH_2^{-}$	Cl	4	51

a Reflux.

EXPERIMENTAL

Boiling points are uncorrected. The 60-MHz ¹H-NMR spectra were determined on a Varian EM-360L spectrometer. IR spectra were determined on a Beckman 4250 infrared spectrophotometer. Low resolution mass spectra were obtained on a Finnegan 1020 mass spectrometer. High resolution mass spectra were obtained on a VG-7070E-HF mass spectrometer. Microanalyses were performed by the Analytical Laboratory, Department of Chemistry, University of California, Berkeley.

The following examples are typical of the preparation of the phosphonodithioic halides in Table I.

S-Benzyl methylphosphonodithioic bromide (5). To a slurry of 4.44 g (0.0202 mole) of 2,4-bis(methyl)-1,3-dithia-2,4-diphosphetane-2,4-disulfide⁴ in 60 mL of toluene and under nitrogen was added 7.58 g (5.27 mL, 0.0444 mole) of benzyl bromide, 4.20 g (0.0484 mole) of lithium bromide, and 1.07 g (0.96 mL, 0.0048 mole) of 15-crown-5.⁵ The mixture was refluxed for 5 hrs and stirred at room temperature overnight. The mixture was filtered, washed with water and saturated aqueous sodium chloride, dried with magnesium sulfate, and evaporated to a clear, mobile oil. Bulb-to-bulb distillation [oven temperature $105-120^{\circ}$ (0.02 torr)] yielded 6.82 g (60%) of 5, a clear oil: ¹H-NMR (CDCl₃) δ 7.35-7.80 (m,5), 4.40 (d, 2, J = 17 Hz), 2.60 (d, 3, J = 13 Hz); IR (film) 1497, 1457, 900, 770, 700, ϵ 43 cm⁻¹; EIMS m/e 282, 280 (M⁺), 201 (M⁺ – Br), 123 (ϵ 7.47, 92 (ϵ 7.47, 1.49). High resolution EIMS M⁺ 279.9145, 281.9124 (ϵ 8.41, 0BrPS₂).

Anal. Calculated for C₈H₁₀ BrPS₂: C, 34.18; H, 3.56. Found: C, 34.77; H, 3.61.

S-Allyl ethylphosphonodithioic chloride (7). The title compound was prepared from 5.0 g (0.0202 mole) of 2,4-bis(ethyl)-1,3-dithia-2,4-diphosphetane-2,4-disulfide, 4 4.62 g (4.92 mL, 0.0605 mole) of allyl chloride, 2.05 g (0.0484 mole) of lithium chloride, 1.07 g (0.96 mL, 0.0048 mole) of 15-crown-5,5 and 60 mL of toluene according to the procedure above for 5. The mixture was refluxed for 4 hours. Bulb-to-bulb distillation [oven temperature 60–70° (0.2 torr)] yielded 4.13 g (51%) of 7, a clear, mobile oil: 1 H-NMR (CDCl₃) δ 5.10–6.30 (m, 3), 3.80 (dd, 2, J = 18, 6.5 Hz), 2.30–3.0 (m, 2), 1.45 (dt, 3, J = 28, 7 Hz); IR (film) 1640, 1455, 1425, 1400, 1235, 1035, 930, 768, 730, 630, 510 cm⁻¹; EIMS m/e 202, 200 (M⁺), 172 (M⁺-ethylene), 167 (M⁺-SH), 165 (M⁺-Cl), 128 (M⁺-C₃H₅S), 73 (C₃H₅S⁺).

Anal. Calculated for C₅H₁₀ClPS₂: C, 29.93; H, 4.99. Found: C, 30.14; H, 5.11.

ACKNOWLEDGEMENT

The author thanks Dr. Lydia Chang and Dr. Bruce Onisko for spectroscopic determinations, and Ms. Diana Gonzalez for preparing the manuscript for publication.

^b Distilled.

Downloaded At: 07:19 30 January 2011

REFERENCES

- (a) A. M. Pozapov, E. A. Krasil'nikova, and A. I. Razumov, Zh. Obshch. Khim., 40, 566 (1970);
 (b) G. Schrader, U.S. Patent No. 3,209,020, 1965.
- (a) M. A. Fahmy, U.S. Patent No. 4,352,762, 1982; (b) J. G. Strong, U.S. Patent No. 4, 258, 038, 1981; (c) W. Hofer, et al., U.S. Patent No. 4,190,652, 1980.
- 3. E. Fluck and H. Binder, Angew. Chem. Internat. Edit., 6, 260 (1967).
- 4. For a general preparation of bis(alkyl)- and bis(aryl)dithiadiphosphetanedisulfides see, P. E. Newallis, J. P. Chupp, and L. C. D. Grownweghe, J. Org. Chem., 27, 3829 (1962).
- 5. Available from Aldrich Chemical Company.
- F. A. L. Anet, J. Krane, J. Dale, K. Daasvatn, and P. O. Kristiansen, Acta Chem. Scand., 27, 3395 (1973).